1D Using model and transfer matrices
Focus on the 1D Ising model

$$
H=-J \sum_{(i j)} s_{i} s_{j}-h \sum_{i} s_{i}
$$

Since the boundary conditions should not matter in the thermodynamic limit $(N \rightarrow \infty)$, chasse periochic boundary conditions.

$$
\text { where }\left\langle s_{i}\right| \hat{T}\left|s_{i+1}\right\rangle=e^{\beta J s_{i} s_{i+1}+\frac{\beta h}{2}\left(s_{i}+s_{i+1}\right)}
$$

Because s_{1} and s_{1+1} can take only two values, ± 1, we may introduce a 2×2 matron

$$
T=\left(\begin{array}{cc}
e^{\beta(J+h)} & e^{-\beta J} \\
e^{-\beta J} & e^{\beta(J-h)}
\end{array}\right)
$$

-transfer matrix TI_ $T=T_{\sim} T^{N}=\lambda^{N}+\lambda^{N}$, where

$$
\begin{aligned}
& Z=\sum_{\{s\}} e^{\beta J\left(s_{1} s_{2}+s_{2} s_{3}+\ldots+s_{N} s_{1}\right)} e^{\beta h\left(s_{1}+s_{2}+\ldots+s_{N}\right)}= \\
& =\sum_{\{s\}} e^{\beta J s_{1} s_{2}+\frac{\beta h}{2}\left(s_{1}+s_{2}\right)} e^{\beta J s_{2} s_{3}+\frac{\beta h}{2}\left(s_{2}+s_{3}\right)} \ldots e^{\beta J s_{N} s_{1}+\frac{\beta h}{2}\left(s_{1}+s_{N}\right)} \\
& =\sum_{\{s\}}\left\langle s_{1}\right| \hat{T}\left|s_{2}\right\rangle\left\langle s_{2}\right| \hat{T}\left|s_{3}\right\rangle \ldots\left\langle s_{N}\right| \hat{T}\left|s_{1}\right\rangle
\end{aligned}
$$

Then $z=\operatorname{Tr}_{r} T^{N}=\lambda_{+}^{N}+\lambda_{-}^{N}$, where λ_{+}and $\lambda_{\text {, }}$ are the eigenvalues of matrix T

$$
\begin{gathered}
0=\operatorname{det}\left|\begin{array}{cc}
\lambda-e^{\beta(J+h)} & e^{-\beta J} \\
e^{-\beta J} & \lambda-e^{\beta(J-h)}
\end{array}\right|=\lambda^{2}-2 \lambda e^{\beta J} \cosh (\beta h)+2 \sinh (2 \beta J) \\
\frac{\mathscr{F}}{2}=e^{2 \beta J} \cosh ^{2}(\beta h)-2 \sinh (3 \beta J)=e^{2 \beta J} \sinh (\beta h)+e^{-2 \beta J} \\
\lambda_{ \pm}=e^{\beta J}\left[\cosh (\beta h) \pm \sqrt{\left.\sinh ^{2}(\beta h)+e^{-4 \beta J}\right]}\right.
\end{gathered}
$$

In the thermodynamic limit $(N \rightarrow \infty), \lambda_{+}^{N}+\lambda_{-}^{N} \rightarrow \lambda_{+}^{N}$
The free energy

$$
F=-N T \ln \left(e^{\beta J}\left[\cosh (\beta h)+\sqrt{\sinh ^{2}(\beta h)+e^{-4 \beta J}}\right]\right)
$$

Magnetic susceptibility
Magnetisation may be defined as

$$
\begin{aligned}
m & =-\frac{\partial F}{\partial h} \\
-\frac{\partial F}{\partial h} & =T \frac{1}{Z} \frac{\partial Z}{\partial h}=\frac{\operatorname{Tr}\left(\sum_{i} s_{i} e^{-\beta H}\right)}{\operatorname{Tr}\left(e^{-\beta H}\right)} \equiv\left\langle\sum_{i} s_{i}\right\rangle
\end{aligned}
$$

(So, $m=\left\langle\sum_{i} s_{i}\right\rangle$ may also be used as a definition)

$$
m=-\frac{\partial F}{\partial h}=N \frac{\sinh (\beta h)+\frac{\cosh (\beta h) \sinh (\beta h)}{\sqrt{\sinh ^{2}(\beta h)+e^{-4 \beta J}}}}{\cosh (\beta h)+\sqrt{\sinh ^{2}(\beta h)+e^{-4 \beta J}}}
$$

$$
m=N \frac{\sinh (\beta h)}{\sqrt{\sinh ^{2}(\beta h)+e^{-4 \beta T}}}
$$

No singularity! (no phase transition)
os $\quad h \rightarrow 0 \quad m \rightarrow 0$

$$
x(h=0)=\left.\frac{\partial m}{\partial h}\right|_{h \rightarrow 0}=\frac{1}{T} e^{\frac{2 T}{T}} \text { - susceptibility }
$$

Heat capacity
set $h=0$

$$
\begin{gathered}
S=-\frac{\partial F}{\partial T}=\beta^{2} \frac{\partial F}{\partial \beta} \\
S=N \ln 2+N \ln [\cosh (\beta J)]-N \frac{J}{T} \tanh (\beta J) \\
C=N \frac{J^{2}}{T^{2}} \frac{1}{\cosh ^{2}(\beta J)} \quad \text { No discontinuity }
\end{gathered}
$$

Correlation length
Define $G(r)=\left\langle s_{k} s_{k+r}\right\rangle-\left\langle s_{k}\right\rangle\left\langle s_{k+r}\right\rangle$
Translational invariance (in the thermodynamic limit)
It is expected in disovelered phases that
$G(r) \propto e^{-\frac{r}{\xi}}, \xi$-correlation length

$$
\begin{aligned}
G(r) & =\left\langle s_{1} s_{r+1}\right\rangle=\frac{1}{2} \sum_{\{s\}} s_{1} e^{-\beta H} s_{r+1}= \\
& =\frac{1}{ح} \sum s_{1}\left\langle s_{1}\right| \hat{\uparrow}\left|s_{2}\right\rangle\left\langle s_{2}\right| \hat{T}\left|s_{3}\right\rangle \ldots\left\langle s_{r}\right| \hat{\hat{T}\left|s_{r+1}\right\rangle s_{r+1} \times}
\end{aligned}
$$

$$
\begin{aligned}
& \quad=\frac{1}{2} \sum_{\{s\}} s_{1}\left\langle s_{1}\right| \hat{T}\left|s_{2}\right\rangle\left\langle s_{2}\right| \hat{T}\left|s_{3}\right\rangle \ldots\left\langle s_{r}\right| \hat{T}\left|s_{r+1}\right\rangle s_{r+1} \times \\
& \times\left\langle s_{r+1}\right| \hat{T}\left|s_{r+2}\right\rangle \ldots\left\langle s_{N}\right| \hat{T}\left|s_{1}\right\rangle \equiv \\
& \text { Using the } \\
& \text { previously found }
\end{aligned}
$$ previously found decomposition

$$
\begin{align*}
& \equiv \frac{1}{Z} T_{r}\left(\hat{s}_{1} \hat{T}^{r} \hat{s}_{r+1} \hat{T}^{N-r}\right)= \\
& =\frac{1}{2} \sum_{\mu, \eta}\langle\mu| \hat{\sigma}_{2}|\eta\rangle y^{r}\langle\eta| \hat{\sigma}_{2}|\mu\rangle \mu^{N-r} \tag{1}
\end{align*}
$$

The dominant in the thermodynamic limit contribution comes from the eigenvalue $\mu=\lambda_{+}$ The eigenvalues with eigenvectors:

$$
\begin{aligned}
& \lambda_{+}=2 \cosh (\beta J) \leftrightarrow \frac{1}{\sqrt{2}}\binom{1}{1} \\
& \lambda_{-}=2 \sinh (\beta J) \leftrightarrow \frac{1}{\sqrt{2}}\binom{1}{-1} \\
& \left\langle\lambda_{+}\right| \hat{\sigma}_{z}\left|\lambda_{+}\right\rangle=\left\langle\lambda_{-}\right| \hat{\sigma}_{2}\left|\lambda_{-}\right\rangle=0 \\
& \left\langle\lambda_{+}\right| \hat{\sigma}_{2}\left|\lambda_{-}\right\rangle=\left\langle\lambda_{-}\right| \hat{\sigma}_{2}\left|\lambda_{+}\right\rangle=1
\end{aligned}
$$

Recall that $Z \approx \lambda_{+}{ }^{N}$
We've demonstrated that $\mu=\lambda_{+}, \gamma=\lambda_{-}$
Then from (1)

$$
\begin{aligned}
& \text { Then from (1) } \\
& G(r)=\left(\frac{\lambda_{-}}{\lambda_{+}}\right)^{r}=(\tanh (\beta J))^{r}=e^{r \ln \tanh (\beta J)}
\end{aligned}
$$

$\xi^{-1}=-\ln \tanh (\beta J)$
at $T \rightarrow 0 \quad \xi \rightarrow \infty$
. de $T \rightarrow \infty \quad \xi \rightarrow 0$
dt $\begin{aligned} T \rightarrow \infty \\ (T \gg J)\end{aligned} \quad \xi \rightarrow 0$

